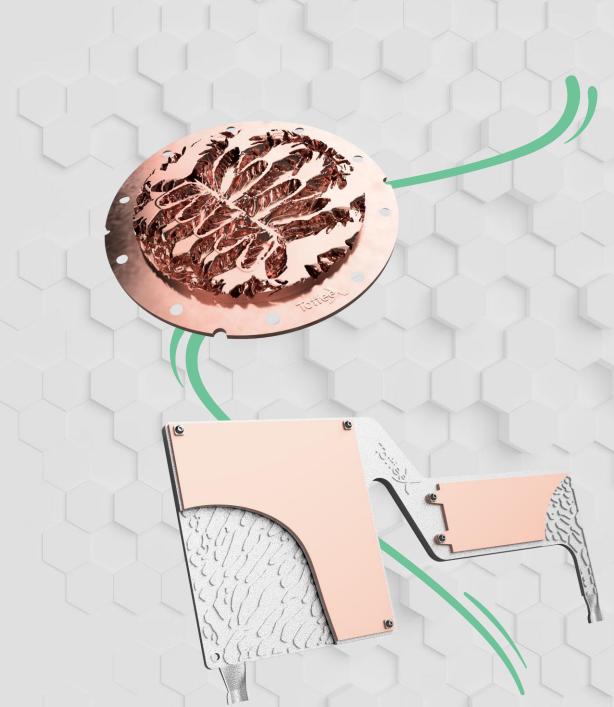


Physics-Driven Engineering Design

with ToffeeX


RICOH "Beyond Print" Event

29 February 2024

Antonio Di Caterino

Customer Success Lead

Agenda

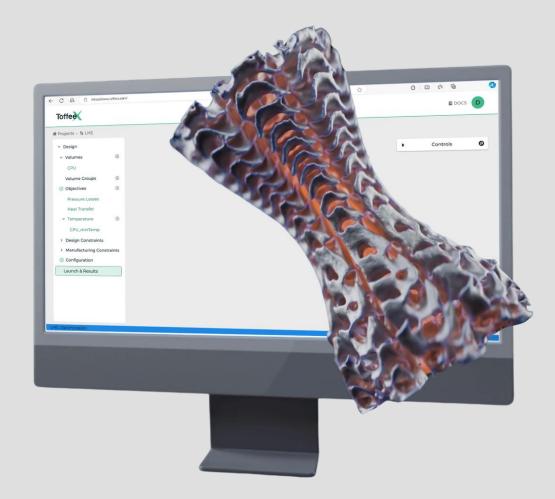
- Introduction
- Topology Optimization and Generative Design
- ToffeeX: Physics-Driven Generative Design
- Applications Examples
- Q&A Session

Company Overview

About Us

• London-based CAE software start-up founded in 2020

What we do


- Physics-Driven Generative Design Software
- Leveraging high-fidelity physics simulations to empower engineers, designers, and analysts

How we do it

• Cloud-native software service

Who we are

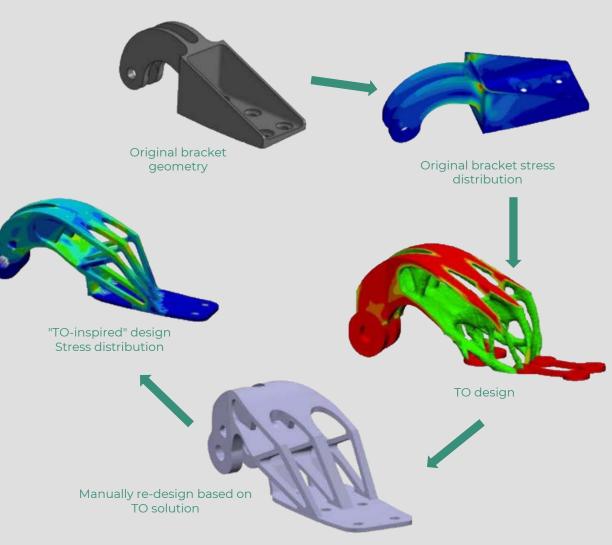
• A unique blend of mathematicians, engineers, and software developers driven by a passion for innovation

Update Design Time-consuming design process Experimental Testing Computer Simulations Limited design exploration Run out of money Go-to-market

Engineering Design Pain Points

Performance limitations

Topology Optimization: Powerful but Limited


T

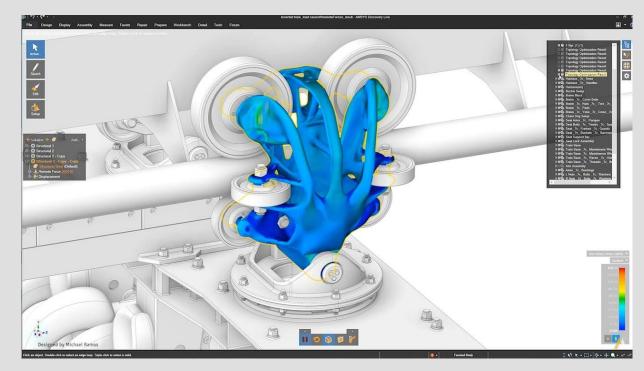
What is Topology Optimization (TO)?

- Mathematical method to find the best distribution of material in a space
- The definition of "best" is (or should be) up to the user:
 - Lightweight Components
 - Material Reduction
 - Enhanced Performance

Why isn't it widespread?

- Complexity
- Limited Applications
- Real-World Requirements
- Interdisciplinary Expertise

Generative Design: a Step Further?


T

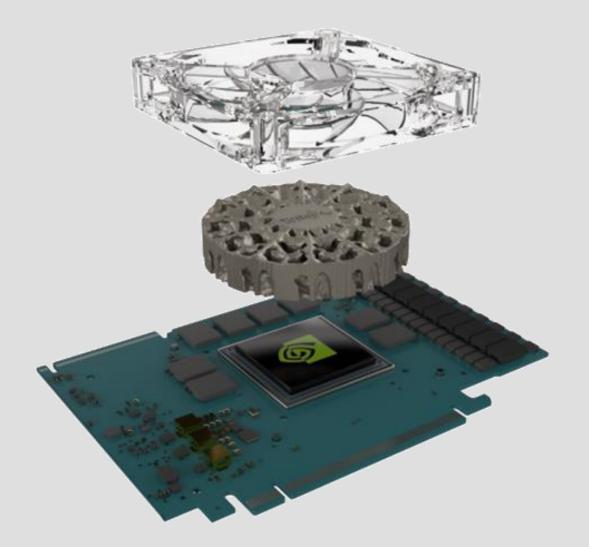
What is Generative Design (GD)?

- Generative Design is a methodology to autonomously generate a multitude of design iterations based on predefined constraints and objectives.
- The outcome is several different designs that build a DoE based on the fitness of the solution.

Why isn't it widespread?

- Complexity
- Limited Applications
- Computation Demands
- Interdisciplinary Expertise

Source: Ansys. Ansys Discovery


Our Vision for The Future of Engineering Design

Multi-Physics Models for Simulation and Optimization

Automation & Integration of Workflow

Integrated Cloud-Based Service

Keep it Real

Streamline you Workflow with ToffeeX

Setup

C A D https://www.toffee.co	m/					0	A* \$		G	۵	ø	œ		0
offee												DOCS	D	
rojects > 🖏 LHS														
Design	CPU_minTemp										ontrol		ø	
Volumes () CPU	Name	CP	U_minTemp								ontroi	•	Ű	
Volume Groups 🛛 💿	Mode	та	irget	×										
Objectives Pressure Losses	Temperature Target	315		К	-									
Heat Transfer	Weight Value	1								-				
 ▼ Temperature © CPU_minTemp 	Volume Selection			^										
> Design Constraints	Available		Selected			1								
 Manufacturing Constraints Configuration 	Search		Search											
Launch & Results		>	CPU					Symn	hetry	plar	e	1	4	6
													may 1	1

Design

	com/		0, A° 12	G	© ☆ ⊜ ≣ DOCS	0
Projects > Te LHS						
Y Design	Launch & Results					
~ Volumes G				•	Controls	0
CPU	Launch					
Volume Groups						
Objectives @	Processors	B CPUs -	WAR .			
Pressure Losses		LAUNCH	M			
Heat Transfer					-	
 Temperature 	Tracking	^	Mar D.	X		
					COLUMN TO AND	
CPU_minTemp				and the		
CPU_minTemp > Design Constraints	🥑 SETUP		the state of the	Mr.		
Design Constraints Manufacturing Constraints						
Design Constraints Manufacturing Constraints Configuration						
Design Constraints Manufacturing Constraints					Į.	· Lo
Design Constraints Manufacturing Constraints Configuration	GENERATING					4
Design Constraints Manufacturing Constraints Configuration	GENERATING	ISSUATE (C				4

Export

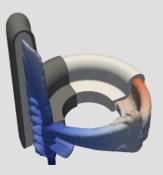
C A A respectively to the constant	lom/		9. A* 12	
rojects > 1a LHS				
Design	Launch & Results			Controls
✓ Volumes ③				Controis
CPU	Launch	·		
Volume Groups 🛞	Tracking			
Pressure Losses	SETUP			
Pressure Losses Heat Transfer				
Pressure Losses Heat Transfer Temperature	C GENERATING		Car Da	
Pressure Losses Heat Transfer Temperature ③ CPU_minTemp			122.03	
Pressure Losses Heat Transfer Temperature CPU_minTemp Design Constraints	GENERATING		100	m
Pressure Losses Heat Transfer Temperature S CPU_minTemp Design Constraints Manufacturing Constraints	GENERATING			and J
Pressure Losses Heat Transfer Temperature S CPU_minTemp Design Constraints Manufacturing Constraints	CENERATING COMPLETED Download results		Star Car	
Pressure Losses Heat Transfer Temperature © CPU_minTemp Design Constraints Manufacturing Constraints Configuration			NO.	
Pressure Losses Heat Transfer Temperature © CPU_minTemp Design Constraints Manufacturing Constraints Configuration	CENERATING COMPLETED Download results		State .	
Pressure Losses Heat Transfer Temperature © CPU_minTemp Design Constraints Manufacturing Constraints Configuration	CENERATING COMPLETED Download results			

1. Define your domain and goals

2. Generate optimized designs in hours

3. Export your designs ready to test

One Software, Many Applications

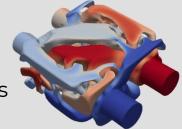


Cold Plates

- Battery Cooling
- Liquid Cooling Solutions
- Energy Storage Systems

Heat Sinks

- Electronic Components
- CPUs/GPUs
- LEDs



Conformal Cooling

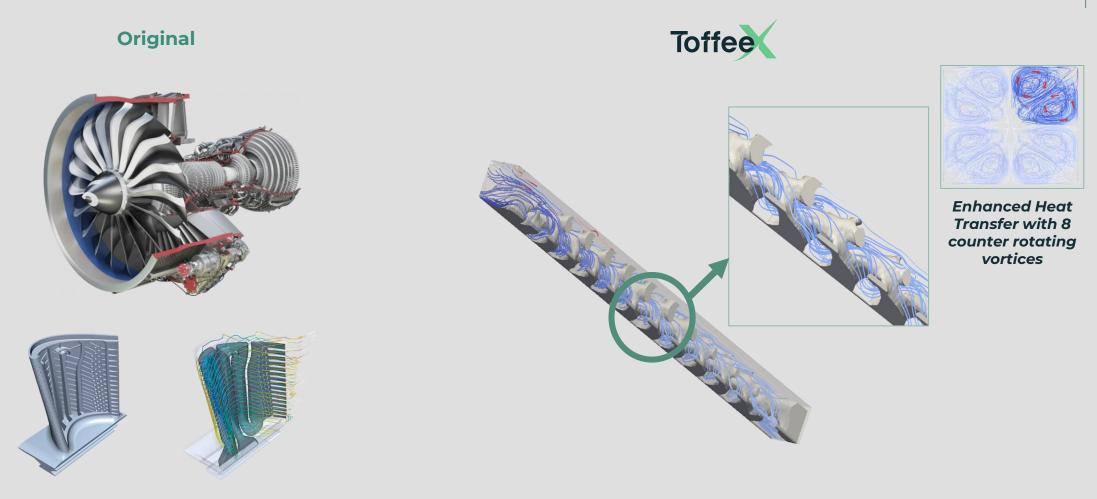
- Injection Molding Tooling
- Die Casting Tooling
- Sand Casting

Heat Exchangers

- Aerospace HEX
- Automotive Components
- HVAC Systems


Power Generation

- Carbon Capture
- Fuel Cells
- Power Generation


Flow Optimization

- Exhaust manifolds
- Fluid collectors
- Laminar Mixers

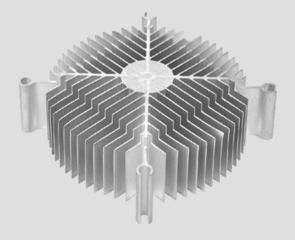
3X Improved Heat Transfer in Gas Turbine Blades

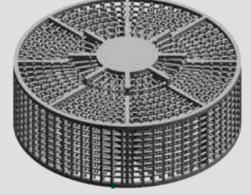
- Turbine blades operating at very high temperatures
- Active Cooling to prevent them from melting

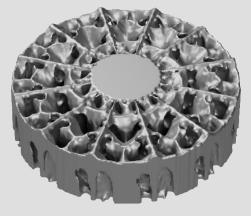
- 3X improvement in heat transfer
- Same pressure losses as traditional design

54% More efficient Heat Sinks for Electronics

Conventional Design Lattice Design (DfAM) Aluminium Extrusion Aluminium Binder-Jetting Process 10% Improvement

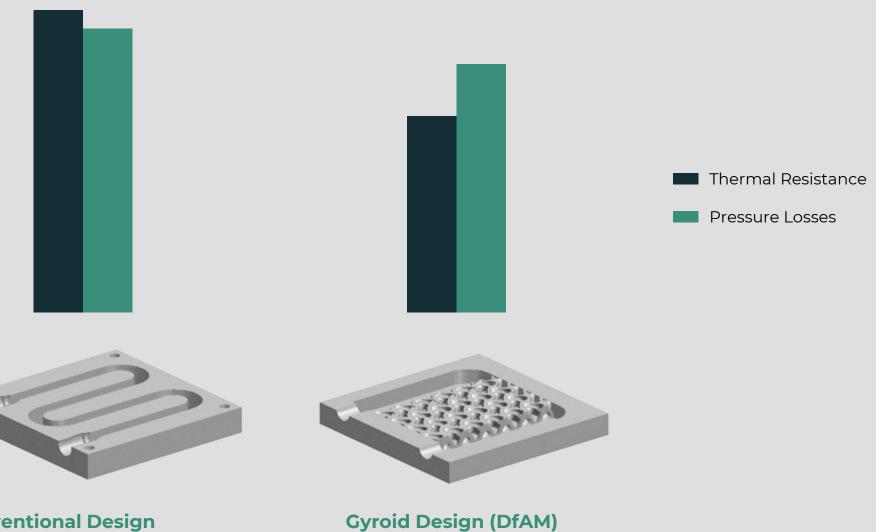

54% More efficient Heat Sinks for Electronics



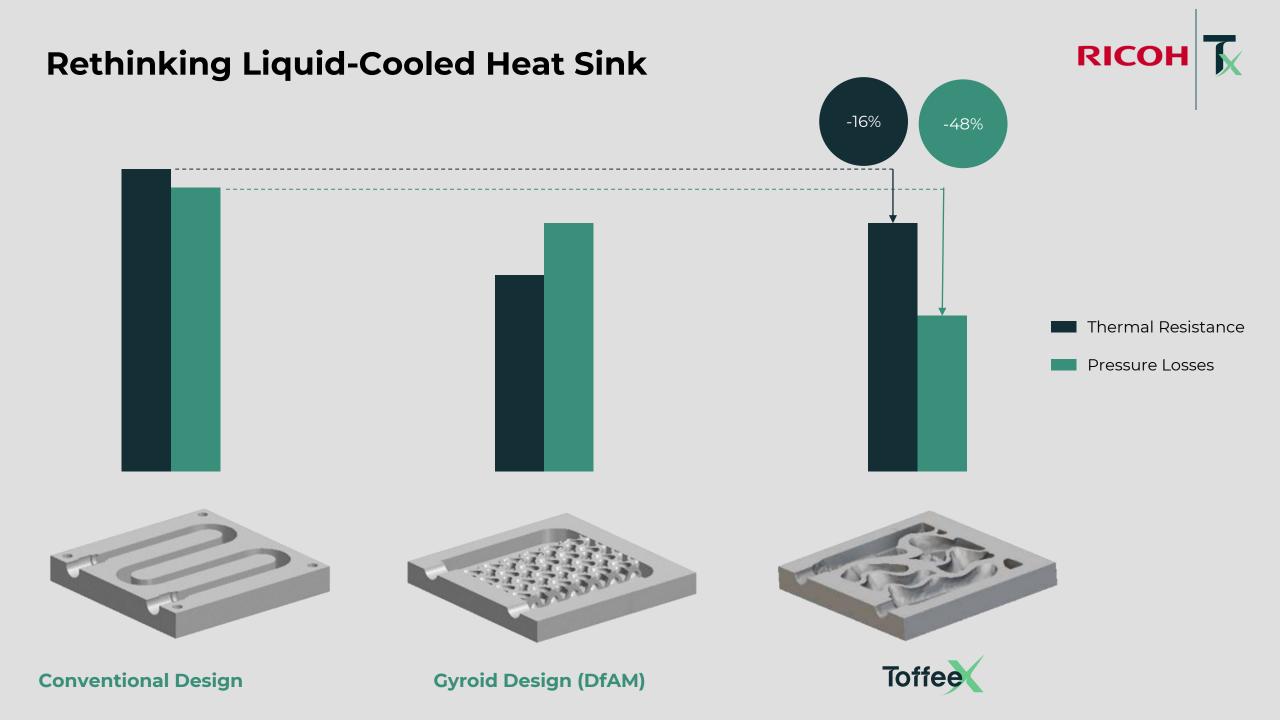

Conventional Design

Lattice Design (DfAM)

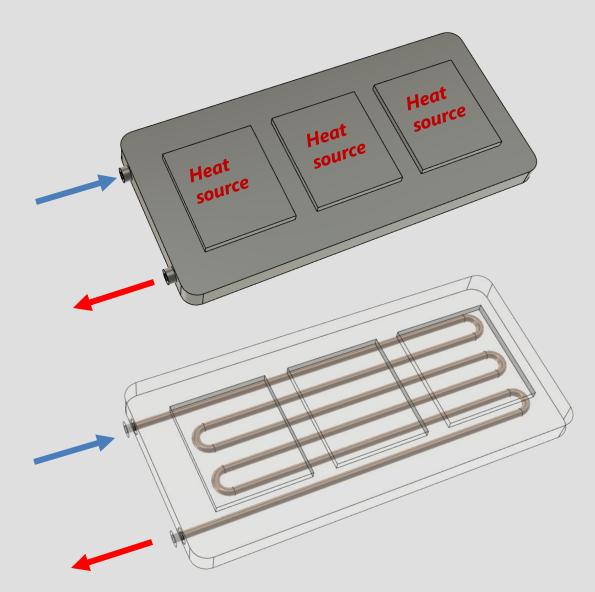
Aluminium Extrusion


Aluminium Binder-Jetting Process

Aluminium Binder-Jetting Process



Rethinking Liquid-Cooled Heat Sink


RICOH

Conventional Design

Redesigning Cold Plates for Battery Cooling

Requirements

- Manufacture using a milling process (high volume)
- Optimize for maximum cooling of the three heat sources for a minimal pumping power

Operating Conditions

- Inlet volumetric flow rate: 1.5 L/min
- Inlet Temperature: 298.15 K
- Power Input : 400 W

	Copper	PG25 Coolant
Density [kg/m3]	8960	1023
Thermal Conductivity [W/m K]	383	0.475
Specific Heat Capacity [J/kg K]	386	3930
Kinematic Viscosity [m²/s]	/	2e-6

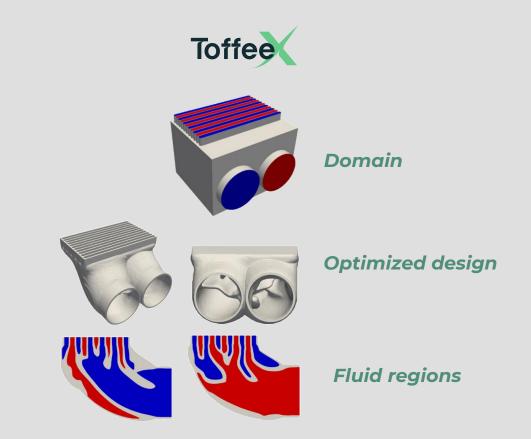
Redesigning Cold Plates for Battery Cooling

65% Lower Pressure Drop

4 Degrees Colder Operating Temperature

38.5% Lighter Design

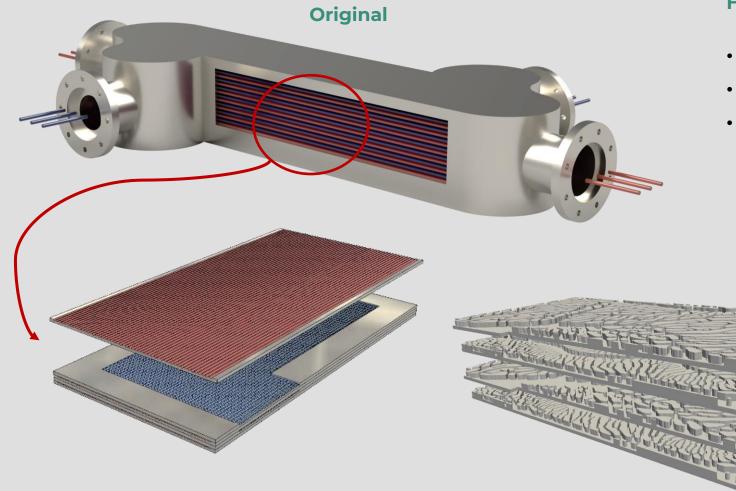
Manufacturable with Traditional Techniques



Double-Fluid Uniform Flow Optimization

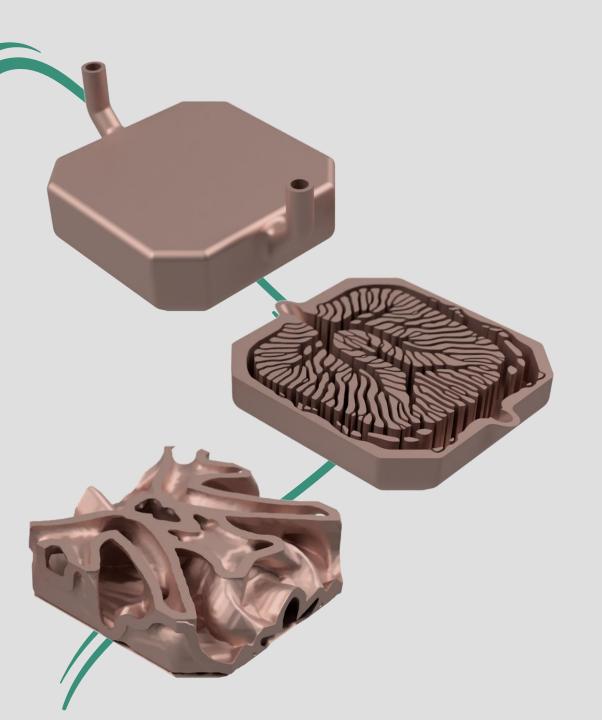
Overcoming traditional CAD issues leveraging ToffeeX

Original


• Uniformity of flow is not guaranteed

• Uniform outlet flow rate for optimal performance

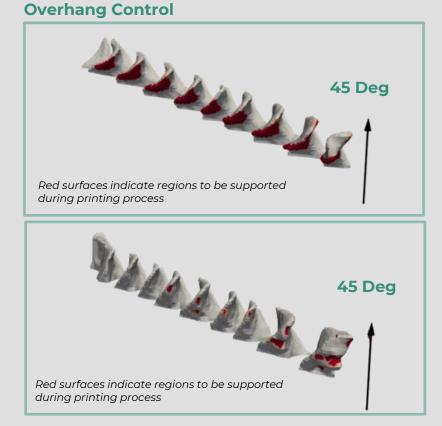
Advanced Printed Circuit Heat Exchangers (PCHE)



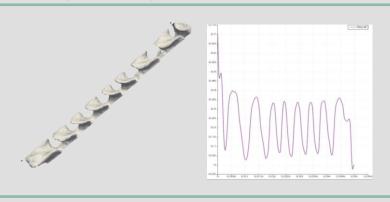
Heat Exchanger for Nuclear Industry

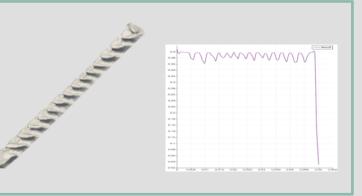
- Multi-fluid configuration (Helium/Nitrogen)
- 8.5% Increase in Heat Transfer between the layers
- Designed for Chemical etching and Diffusion Bonding to avoid any leakage in the material

Optimize for your Manufacturing Process


With ToffeeX, users can select the complexity of the final design with their manufacturing process in mind.

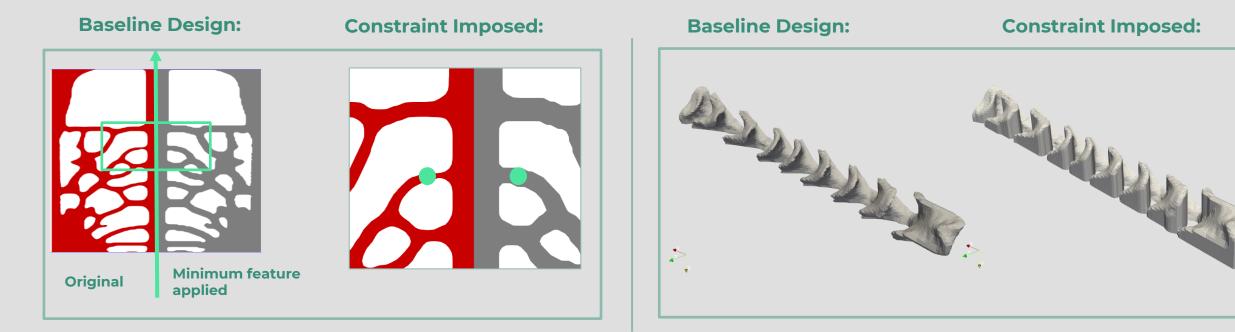
Whether you are using traditional manufacturing techniques, or you have adopted Additive Manufacturing, ToffeeX can create the optimal design for any process.


Design for Additive Manufacturing


ToffeeX includes a list of constraint to maximize the success of your additive manufacturing process

- Unsupported Overhang minimization
- Shrinkage/Warpage control

Shrinkage/Warpage Minimization



Design For Conventional Manufacturing

It's not all about Additive Manufacturing. ToffeeX integrates constraints for traditional manufacturing.

- Minimum channel width (tooling size)
- 2.5D Milling

Curious to Know More?

Launching ToffeeX:

The latest in physics-driven generative design

Tuesday 5th March, 11am GMT

Featuring Live Demo and Q&A!

RICOH

The best design, every time.

Trusted by

